Ch 6 Revision

Trig (Identities and Equations)

Solomon D

2. Find, to 2 decimal places, the solutions of the equation

$$
3 \cot ^{2} x-4 \operatorname{cosec} x+\operatorname{cosec}^{2} x=0
$$

in the interval $0 \leq x \leq 2 \pi$.

Solomon F

1. Solve the equation

$$
3 \operatorname{cosec} \theta^{\circ}+8 \cos \theta^{\circ}=0
$$

for θ in the interval $0 \leq \theta \leq 180$, giving your answers to 1 decimal place.

Solomon J

6. (a) Prove the identity

$$
\begin{equation*}
2 \cot 2 x+\tan x \equiv \cot x, \quad x \neq \frac{n}{2} \pi, \quad n \in \mathbb{Z} . \tag{5}
\end{equation*}
$$

(b) Solve, for $0 \leq x<\pi$, the equation

$$
2 \cot 2 x+\tan x=\operatorname{cosec}^{2} x-7,
$$

giving your answers to 2 decimal places.

Solomon H

2. Giving your answers to 1 decimal place, solve the equation

$$
\begin{equation*}
5 \tan ^{2} 2 \theta-13 \sec 2 \theta=1 \tag{7}
\end{equation*}
$$

for θ in the interval $0 \leq \theta \leq 360^{\circ}$.

Solomon A

7. (a) (i) Show that

$$
\sin (x+30)^{\circ}+\sin (x-30)^{\circ} \equiv a \sin x^{\circ}
$$

where a is a constant to be found.
(ii) Hence find the exact value of $\sin 75^{\circ}+\sin 15^{\circ}$, giving your answer in the form $b \sqrt{6}$.
(b) Solve, for $0 \leq y \leq 360$, the equation

$$
\begin{equation*}
2 \cot ^{2} y^{\circ}+5 \operatorname{cosec} y^{\circ}+\operatorname{cosec}^{2} y^{\circ}=0 \tag{6}
\end{equation*}
$$

Solomon C

2. (a) Prove, by counter-example, that the statement
" $\operatorname{cosec} \theta-\sin \theta>0$ for all values of θ in the interval $0<\theta<\pi$ "
is false.
(2)
(b) Find the values of θ in the interval $0<\theta<\pi$ such that

$$
\operatorname{cosec} \theta-\sin \theta=2
$$

giving your answers to 2 decimal places.

Solomon D

4. (a) Use the identities for $(\sin A+\sin B)$ and $(\cos A+\cos B)$ to prove that

$$
\begin{equation*}
\frac{\sin 2 x+\sin 2 y}{\cos 2 x+\cos 2 y} \equiv \tan (x+y) \tag{4}
\end{equation*}
$$

(b) Hence, show that

$$
\begin{equation*}
\tan 52.5^{\circ}=\sqrt{6}-\sqrt{3}-\sqrt{2}+2 \tag{5}
\end{equation*}
$$

Solomon E

2. (a) Prove that, for $\cos x \neq 0$,

$$
\begin{equation*}
\sin 2 x-\tan x \equiv \tan x \cos 2 x . \tag{5}
\end{equation*}
$$

(b) Hence, or otherwise, solve the equation

$$
\sin 2 x-\tan x=2 \cos 2 x
$$

for x in the interval $0 \leq x \leq 180^{\circ}$.

Solomon G

2. (a) Use the identities for $\cos (A+B)$ and $\cos (A-B)$ to prove that

$$
\begin{equation*}
2 \cos A \cos B \equiv \cos (A+B)+\cos (A-B) . \tag{2}
\end{equation*}
$$

(b) Hence, or otherwise, find in terms of π the solutions of the equation

$$
2 \cos \left(x+\frac{\pi}{2}\right)=\sec \left(x+\frac{\pi}{6}\right)
$$

for x in the interval $0 \leq x \leq \pi$.

Solomon J

1. (a) Given that $\cos x=\sqrt{3}-1$, find the value of $\cos 2 x$ in the form $a+b \sqrt{3}$, where a and b are integers.
(b) Given that

$$
2 \cos (y+30)^{\circ}=\sqrt{3} \sin (y-30)^{\circ}
$$

find the value of $\tan y$ in the form $k \sqrt{3}$ where k is a rational constant.

Solomon K

1. (a) Find the exact value of x such that

$$
\begin{equation*}
3 \arctan (x-2)+\pi=0 . \tag{3}
\end{equation*}
$$

(b) Solve, for $-\pi<\theta<\pi$, the equation

$$
\cos 2 \theta-\sin \theta-1=0
$$

giving your answers in terms of π.

Solomon L

5. Find the values of x in the interval $-180<x<180$ for which

$$
\begin{equation*}
\tan (x+45)^{\circ}-\tan x^{\circ}=4, \tag{9}
\end{equation*}
$$

giving your answers to 1 decimal place.

Solomon L

7. (a) Use the identity

$$
\cos (A+B) \equiv \cos A \cos B-\sin A \sin B
$$

to prove that

$$
\begin{equation*}
\cos x \equiv 1-2 \sin ^{2} \frac{x}{2} . \tag{3}
\end{equation*}
$$

(b) Prove that, for $\sin x \neq 0$,

$$
\begin{equation*}
\frac{1-\cos x}{\sin x} \equiv \tan \frac{x}{2} . \tag{3}
\end{equation*}
$$

(c) Find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\frac{1-\cos x}{\sin x}=2 \sec ^{2} \frac{x}{2}-5,
$$

giving your answers to 1 decimal place where appropriate.

Solomon B

3. (a) Use the identities for $\sin (A+B)$ and $\sin (A-B)$ to prove that

$$
\begin{equation*}
\sin P+\sin Q \equiv 2 \sin \frac{P+Q}{2} \cos \frac{P-Q}{2} . \tag{4}
\end{equation*}
$$

(b) Find, in terms of π, the solutions of the equation

$$
\sin 5 x+\sin x=0
$$

for x in the interval $0 \leq x<\pi$.

Solomon

6. (a) Use the identities for $\cos (A+B)$ and $\cos (A-B)$ to prove that

$$
\begin{equation*}
\cos P-\cos Q \equiv-2 \sin \frac{P+Q}{2} \sin \frac{P-Q}{2} . \tag{4}
\end{equation*}
$$

(b) Hence find all solutions in the interval $0 \leq x<180$ to the equation

$$
\begin{equation*}
\cos 5 x^{\circ}+\sin 3 x^{\circ}-\cos x^{\circ}=0 . \tag{7}
\end{equation*}
$$

